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ABSTRACT

In this paper the possible application of artificial
neural networks for on-board orbit propagation is
studied, using perceptron type nets trained with a
backpropagation method and data of the first Brazilian
Satellite SCD1. Preliminary results show that neural nets
with just one hidden layer of 20 neurons can learn how to
propagate SCD1 orbits.

INTRODUCTION

The use of artificial neural networks'>¥ as
computational tools with the characteristic of parallel
signal processing and with the capacity that some of
them have of learning and representing data mappings
is already an established fact. The success in dynamic
system modelling®, specially in control systems related
schemes, is a strong indication that their utility in orbital
dynamics modelling, and specifically in the problem of
on-board satellite orbit propagation, can be safely
expected. The combination of space qualified parallel
computational facilities that soon will be available with
the convenience of having satellite autonomous missions
give motivation to better study this possibility of use.

In this paper, using data of the first Brazilian
Satellite SCD1, launched on the 9th of February of 1993,
a preliminary study is done to evaluate the possible use
of multilayer perceptron networks for on-board orbit
propagations. A software called NETS, developed by the
Software Technology Branch of NASA's Johnson Space
Center and based on the generalized delta
backpropapagation learning method® is employed to
train the neural nets. Results of a previous study®, where
the different architetures and sizes of this type of neural
net were tested in terms of the capacity of learning how
to model typical arcs of the SCD1 orbit, are considered
to select the simplest configuration to be used in this
orbit propagation study.

MULTILAYER PERCEPTRON AND ORBIT
PROPAGATION

The theory of artificial neural networks
developed until now guarantees that a neural net built
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with artificial perceptron neurons with just one hidden
layer, can represent mappings
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uniformly and with the desired accuracy in the domain
D, as long as the number of neurons in the hidden layer is
large enough?).

The multilayer perceptron neural network is
formed of basic artificial neurons, like the one of Figure

1, where for a kth hidden layer, with 1, neurons:
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with the activation function @('s) being typically given
by:

a(s)=1/(1+exp(—s)) ora(s)=tanl(s) 3)

The inputs to the first hidden layer are

xf;: x;,i=1,2,...,n, the network input vector. And for -

the neurons of the output layer, k = ¢, it is sufficient to
have zero threshold weights and an identity activation
function:
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Figure 1: BASIC ARTIFICAL NEURON

For the orbit propagation application, after the
experience acquired with a previous study®, a perceptron




type neural net was chosen with just one hidden layer, as
illustrated in Figure 2, where x;(t),i=1,2,...,n
represents the satellite motion state vector at time 7, and
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where o) is the vector of the

ok for k=1,2, and

7 i,j=1,2,...,n.

Figure 2: ORBIT PROPAGATION NEURAL NET

The theory guarantees that this neural net, with a
large enough rj; (the number of neurons in the hidden
layer), can uniformly learn (by adjustment of the weights

wfj‘- ) how to approximate, with a given accurary a
continuous and time invariant function

x(t+At) = f(x(1),At) (©6)

which for a given At discretizes the satelllite motion in a
chosen state domain.

Notice that, if one assumes the orbital dynamics
to be modelled by a state diferential equation with time
invariant derivative function, then one can also assume,
based on the theory of ODE numerical integrations, that
this differential equation can always be discretized in a
chosen domain with any given accuracy, as indicated in
Equation (3).

To train the neural net to represent the satellite
motion in the region of interest, a data set of pairs
(x(t,),x(t,+At)),¢(=1,2,..., L, sufficiently distribut-
ed in this region is considered and, as usual, the
adjustment (estimation) of the weights is done by
minimization of:
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using, for example a back-propagation method”, as is the
case in this paper.

TESTS AND RESULTS

In a previous study®, for the data of a short arc
of the orbit of the first Brazilian satellite, five different
network configurations, namely (i) one hidden layer with
10 neurons; (ii) one with 20 neurons; (iii) one with 40
neurons; (iv) two hidden layers with 10 neurons and (v)
two with 20 neurons each, were chosen for training and
testing. The results of that study showed that a
perceptron neural net with one hidden layer of n, =20
neurons can learn and represent the typical orbital arcs of
SCD1 with the required accuracy.

The tests of this present study used the same
neural net and were aimed at:

CASE 1: assessing the number of data pairs
(x(t),x(t+At)) equally distributed along a nominal
orbit of SCD1 (Table 1) necessary to allow the neural net
to learn how to represent the complete orbit with a
required accuracy;

CASE 2: assessing the neural net capacity of learning
and propagating orbits inside a region around the
nominal orbit of SCD1 (the same of Table 1) assuming
some positive and negative variations in the nominal
orbital elements, as in Table 2:

Table 1: Nominal orbit of SCD1

Orbital Elements
= 7138139m
0.0
250
1850
3509
125°
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Table 2: Orbits generated with some deviations in the
nominal orbit of SCD1.

Orbital Orbital
Elements of Elements of
Orbit 1 Orbit 2
a= 7138139m a = 7138139 m
e = 0.002 e = - .0004
i 240 i=' 269
Q 1800 0= -190°
@ =i 3459 @ = 3559
M= 1209 M= 1300

202 points in each of these orbits were generated
using a numerical integration procedure”, so as to use as
data sets for training.



Now. in Case 1, for SCD1 nominal orbit, after
using various combinations of data sets, it was found that
only 42 data pairs chosen in a systematic way
((nx10+1;nx10+2), n=70, 1, ..., 20) from the large
set of 202 points are enough for training the neural net to
obtain an RMS error of the order of 104 in about four
hundred thousand iterations. When the trained net was
tested with some arbitrary data points from the large set
of 202 points, the precision obtained also was of the
same order. Results of some arbitrary input data values
are shown in Table 3. The values shown in Table 3 are
the normalized values of the state vector, generated as
per the requirements of the software used.

Table 3: Propagation results of the nominal orbit of

SCD1
Input True Network Accuracy
value output Estimate
value

0.6913431 0.7004593 0.700306 104
0.2102070 0.2165194 0.216159 1074
0.8073593 0.8019391 0.801652 1074
0.7930977 0.7869485 0.787230 10 .
0.6962698 0.7052696 0.704903 1074 7
0.3326055 0.3230275 0.322333 1074 /5:
0.7506994 0.7582527 0.758266 107
0.2600358 0.2681622 0.268032 107
0.7633476 0.7559632 | 0.755588 107
0.7443372 0.7363477 0.736370 162
0.7547293 0.7621400 0.762091 107
0.2695452 0.2613779 0.261065 1074
0.7180891 0.7265853 0.726574 1072
0.2299774 0.2371099 0.236824 10:
0.7902074 0.7839076 0.783591 104
0.7738069 0.7668275 0.767019 1074
0.7226544 0.7310223 0.730876 1074
0.3044048 0.2953783 0.294866 1074
0.7265853 0.7348579 0.734870 107
0.2371099 0.2445020 0.244253 1074
0.7839076 0.7773266 0.776994 1074
0.7668275 0.7595846 0.759736 052
0.7310223 0.7391627 0.739062 1074
0.2953783 0.2865538 0.286097 104

In case 2 also, it was found that only 42 data
pairs of each of the the three orbits (given inTable 1 and
Table 2) chosen in the same systematic way as in case 1
were enough to train the network and to obtain an RMS
error of the order of 10'4, in about four hundred thousand
iterations as before. When the trained set was tested with
some arbitrary data points from the large set of 606
points (202 points for each orbit), the accuracy obtained
also was of the same order.

Now. two different orbits (given in Table 4) in
the region comprising the three orbits (given in Tables 1
and 2) were considered to test the trained neural net. The
results obtained for some arbitrary data points on these
two orbits (orbits 3 and 4) are given in Table 5. It can
clearly be seen that the RMS errors in all the propagation

test cases are of the same order as that obtained in
training the net.

Table 4: Orbital elements of two more orbits in the same
region

Orbital Orbital
Elements of Elements of
Orbit 3 Orbit 4
a = 7138139m a = 7138139m
e = 0.001 e = 0.003
i= 2459 i =-94.50
Q = 18259 Q = 18759
® = 34750 o = 35259
M= 12250 M= 127.59
Table 5 - Results of orbits 3 and 4
Input True Estimate | RMS
Values Value Error
0.7102422 0.7189167 0.718827
0.2257829 0.2327436 0.232722
0.8027834 0.7971204 0.796945 104
0.7793186 0.7725883 0.772969
0.7182109 0.7266629 0.726859
Orbit 3 0.3237214 0.3143399 0.314277
0.4188103 0.4081257 0.408008
0.8382275 0.8352234 0.835157
0.1524335 0.1539084 0.153958 104
0.1592707 0.1619666 0.162104
0.4110073 0.4003768 0.400596
0.5401594 0.5511174 0.551025
0.6329587 0.6430624 0.642355
0.1773240 0.1817425 0.181985
0.8288617 0.8249297 0.825169 104
0.8236615 0.8193259 0.819318
0.6358833 0.6459295 0.646284
Orbit 4 0.3798882 0.3696268 0.369138
0.2810660 0.2725717 0.272220
0.7714322 0.7643381 0.764193
0.2191178 0.2258431 0.226074 | 104
0.2267777 0.2338155 0.233556
0.2791593 0.2707051 0.271009
0.7087188 0.7174890 0.717478

CONCLUSIONS

The analysis of the results indicates that a
perceptron type neural network with just one hidden
layer of 20 neurons can be trained to learn orbital motion
of a low orbit satellite and to become a numerical tool
for on-board orbit propagation.

However, before a conclusion is taken that
neural nets are not only feasible for this purpose but also
competitive in terms of computational load and
complexity, comparison studies will have to be done,
considering the already available alternatives of orbit




numerical integration and orbit analytical
approximations. On the side of neural nets will be the
advantages of:

e learning during operation;
e paralell processing; and
e fault tolerance.
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